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Abstract. In this paper, we establish the existence theorems of simultaneous equilibrium
problems. As consequences of our results, we establish the existence theorem of simultaneous
mathematical programs and equilibrium problems and the existence theorems of generalized
vector quasi-saddle point problems.
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1. Introduction

Let E be a topological vector space, X⊂E be a nonempty subset, f :X×X→
R be a bifunction with f (x, x)=0 for all x ∈E, the scalar equilibrium prob-
lem (EP) is to fined x̄ ∈X such that

f (x̄, y)� 0 for all y ∈X.

The equilibrium problem encompasses, as special cases, many important
problems including optimization problems, variational inequalities problems,
Nash equilibrium problems, fixed point problems and complementary prob-
lems (see Blum and Oettli, 1994). This type of problem is extensively inves-
tigated and generalized by many authors (see Bianchi and Schaible, 1996;
Ansari et al., 1997; Bianchi et al., 1997; Lin and Park, 1998; Ansari and
Yao, 1999; Ansari, 2000; Lin and Yu, 2001; Lin et al., 2002; Hou et al.,
2003; Lin et al., 2003 and references there in).

Let Z be a Hausdorff topological vector space (in short t.v.s.) and let
X and Y be nonempty subsets of two Hausdorff t.v.s., respectively. Let
S: X −◦X, T : X −◦Y , C: X −◦Z, f : X ×Y ×X −◦Z and g: X ×Y ×Y −◦Z

be multivalued maps with nonempty values.
In this paper, we study the following classes of simultaneous generalized

vector quasi-equilibrium problems:
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(I) Find (x̄, ȳ)∈X ×Y , x̄ ∈S(x̄) and ȳ ∈T (x̄) such that

f (x̄, ȳ, u)⊆C(x̄) for all u∈S(x̄) and

g(x̄, ȳ, v)⊆C(x̄) for all v ∈T (x̄).

(II) Find (x̄, ȳ)∈X ×Y , x̄ ∈S(x̄) and ȳ ∈T (x̄) such that

f (x̄, ȳ, u)∩C(x̄) �=∅ for all u∈S(x̄) and

g(x̄, ȳ, v)∩C(x̄) �=∅ for all v ∈T (x̄).

(III) Find (x̄, ȳ)∈X ×Y , x̄ ∈S(x̄) and ȳ ∈T (x̄) such that

f (x̄, ȳ, u)∩ (−int C(x̄))=∅ for all u∈S(x̄) and

g(x̄, ȳ, v)∩ (−int C(x̄))=∅ for all v ∈T (x̄).

(IV) Find (x̄, ȳ)∈X ×Y , x̄ ∈S(x̄) and ȳ ∈T (x̄) such that

f (x̄, ȳ, u) �⊆−int C(x̄) for all u∈S(x̄) and

g(x̄, ȳ, v) �⊆−int C(x̄) for all v ∈T (x̄).

If g = 0, then the above four kinds of simultaneous generalized vector
quasi-equilibrium problems are reduced to the vector quasi-equilibrium
problems studied by Hou et al. (2003).

(a) If g = 0, Y = X and T (x) = X, S(x) = X for all x ∈ X, and F(x,u) =
f (x, y, u) for all (x, y, u)∈X ×X ×X, then equilibrium problem IV is
reduced to the problem, which was studied in Ansari et al. (1997) and
Lin et al. (2003). If we assume further that C(x)=Z \D(x), then equi-
librium problem II is reduced to the problem, which was studied in Lin
et al. (2002).

(b) If g=0 and C(x)=C for all x ∈X, where C is a cone in Z. Then equi-
librium problem, III is reduced to the problem, which was studied in
Lin and Yu (2001).

(c) If g = 0, Y =X and T (x)=X, S(x)=X, C(x)=C, F(x,u)=f (x, y, u)

for all x, y, u∈X. These equilibrium problems were studied in Ansari
(2000).

(d) If g = 0, C(x) = C for all x ∈ X, and f : X × Y × X → Z. Then equi-
librium problems III and IV were reduced to the problem, which was
considered in Lin and Yu (2001).

(e) If g = 0, Z = R and C(x) = R
+ for all x ∈ X and f : X × Y × X −→ R,

then problems I–IV are the same. This problem was considered in Lin
and Park (1998).
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The first part of this paper is to study the existence theorems of four
kinds of simultaneous generalized vector quasi-equilibrium problems. Our
results extend and improve all the results in Hou et al. (2003), and our
results do not assume any kind of monotonicty assumption. As applica-
tions of our results, we study the existence theorem of the following simul-
taneous mathematical program and equilibrium problem.

Find (x̄, ȳ)∈X ×Y , x̄ ∈S(x̄) and ȳ ∈T (x̄) such that

f (u)−f (x̄)∈C(x̄) for all u∈S(x̄)

and

g(x̄, ȳ, v)∈C(x̄) for all v ∈T (x̄),

where f :X −◦Z and C:X −◦Z, g:X ×Y ×Y →Z.
We also apply the existence theorems of the simultaneous generalized

vector quasi-equilibrium problem to study the generalized vector quasi-sad-
dle point problems.

Find (x̄, ȳ)∈X ×Y , x̄ ∈S(x̄) and ȳ ∈T (x̄) such that

f (x, ȳ)−f (x̄, ȳ)∈C(x̄) for all x ∈S(x̄)

and

f (x̄, ȳ)−f (x̄, y)∈C(x̄) for all y ∈T (x̄).

Recently, Kazm et al. (2001) study the vector saddle point with con-
stant cone, Kimura and Tanaka (2003) study the saddle point, when S(x)=
X and T (x) = Y , and C(x) is replaced by int C(x). Our results and our
approach are quite different from the existence results in the literature (e.g.,
Luc and Vargas, 1992; Tanaka, 1994, 1998, 1999; Shi and Ling, 1995;
Kazmi et al., 2001; Kimura and Tanaka, 2003).

2. Preliminaries

Let X be a nonempty subset of a topological space E. We denote by 2X

the family of all subsets of the set X, by 〈X〉 the class of all finite subset
of X, by X̄ the closure of X, and by int X the interior of X.

For nonempty sets X and Y , a multivalued map F :X −◦Y is a function
from X into 2Y . Let X and Y be topological spaces and T : X −◦Y be a
multivalued map.

(1) T is upper semicontinuous (in short u.s.c.) (resp. lower semicontinuous,
in short l.s.c) at x ∈ X if for every open set V containing T (x) (resp.
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T (x) ∩ V = ∅), there is an open set U containing x such that T (u) ⊆
V (resp. T (U)∩V =∅) for all u∈U ; T is u.s.c. on X if T is u.s.c. (resp.
l.s.c) at every point of X.

(2) T is continuous at x if T is both u.s.c. and l.s.c. at x.
(3) T is closed if GrT ={(x, y)∈X ×Y :y ∈T (x)} is closed in X ×Y .
(4) T is compact if there exists a compact set K such that T (X)⊆K.

Throughout this paper, all topological spaces are assumed to be Hausdorff.
The following definitions and theorems are need in this paper.

DEFINITION 2.1. Let X be a convex subset of a t.v.s. and Z be a t.v.s.
Let f : X ×X −◦Z, g: X −◦Z, and C: X −◦Z be multivalued maps. Given
any �={x1, x2, . . . , xn}∈ 〈X〉 and any x ∈ co{x1, x2, . . . , xn}.
(1) f is said to be strong type I C-diagonally quasi-convex (SIC-DQC, in

short) (Hou et al., 2003) in the second argument if for some xi ∈�.

f (x, xi)⊆C(x);

(2) f is said to be strong type II C-diagonally quasi-convex (SIIC-DQC,
in short) (Hou et al., 2003) in the second argument if for some xi ∈�.

f (x, xi)∩C(x) �=∅;

(3) f is said to be weak type I C-diagonally quasi-convex (WIC-DQC, in
short) (Hou et al., 2003) in the second argument if for some xi ∈�.

f (x, xi)∩ (−int C(x))=∅;

(4) f is said to be weak type II C-diagonally quasi-convex (WIIC-DQC,
in short) (Hou et al., 2003) in the second argument if for some xi ∈�.

f (x, xi) �⊆−int C(x);

(5) g is said to be convex (resp. concave) if for any x1, x2 ∈X, λ∈ [0,1],

g(λx1 + (1−λ)x2)⊆λg(x1)+ (1−λ)g(x2),

(resp. λg(x1)+ (1−λ)g(x2) ⊆ g(λx1 + (1−λ)x2));

(6) g is said to be Cx-quasiconcave like if for any x, y ∈X, λ∈ [0,1], either

g(λx + (1−λ)y)⊆g(x)+C(x)

or g(λx + (1−λ)y)⊆g(y)+C(x);
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(7) g is said to be Cx-quasiconconvex if for any x, y ∈X, λ∈ [0,1], either

g(x)⊆g(λx + (1−λ)y)+C(x)

or g(y)⊆g(λx + (1−λ)y)+C(x);

(8) g is said to be C(x) convex if αg(x1) + (1 − α)g(x2) − g(αx1+
(1−α)x2)⊂C(αx1 + (1−α)x2) for all x1, x2 ∈X and α ∈ [0,1].

DEFINITION 2.2. Let X and Y be Banach spaces, f :X→Y , f is said to
be Fréchet differentiable at x0 ∈X, if there exists a Df (x0)∈L(X,Y ) such
that

lim
x→x0

‖f (x)−f (x0)−〈Df (x0), x −x0〉‖
‖x −x0‖ =0,

where L(X,Y ) = {T |T : X → Y is a continuous linear operator}. Df (x0) is
said to be the Fréchet derivative of f at x0, f is said to be Fréchet differ-
entiable on X if f is Fréchet differentiable at each point of X.

THEOREM 2.1. (Aubin and Cellina, 1994). Let X and Y be topological
spaces, T :X −◦Y be a multivalued map.

(1) If T is an u.s.c. multivalued map with closed values, then T is closed.
(2) If T is closed and Y is compact, then T is an u.s.c. multivalued map.
(3) If X is compact and T : X −◦Y is an u.s.c. multivalued map with com-

pact values, then T (X) is compact.

THEOREM 2.2. (Tan, 1995). Let T be a multivalued map of a topological
spaces X into a topological spaces Y . Then T is l.s.c. at x ∈X if and only for
any y ∈T (x) and for any net {xα} in X converging to x, there is a net {yα}
such that yα ∈T (xα) for every α and yα converging to y.

THEOREM 2.3. (Kim and Tan, 2001). Let X and Y be nonempty compact
convex metrizable subsets of locally convex t.v.s E and H , respectively. A:
X −◦X, F : X −◦Y and P : X × Y −◦X be multivalued maps satisfying the
following conditions:

(1) For each x ∈X, A(x) is a nonempty convex subset of X;
(2) clA:X −◦X is u.s.c.;
(3) F : X −◦X is u.s.c. and F(x) is a nonempty closed convex subset of X

for all x ∈X;
(4) For all (x, y)∈X ×Y , x /∈coP(x, y);
(5) For all y ∈Y , P −(y) and A−(y) is open in X ×Y .
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Then there exists (x̄, ȳ)∈X ×Y such that x̄ ∈ clA(x̄), ȳ ∈F(x̄) and A(x̄)∩
P(x̄, ȳ)=∅.

THEOREM 2.4. (Ding and Tarafdar, 2000). Let W and Z be t.v.s. Suppose
that L(W,Z) is equipped with σ -topology. Then the bilinear mapping < ·, ·>:
L(W,Z)×Z is continuous on L(W,Z)×W .

THEOREM 2.5. (Swartz, 1992). Let X be a complete metrizable locally
convex t.v.s. If K ⊂X is compact, then coK is compact.

PROPOSITION 2.6. Let K be a convex space, Z a t.v.s., F: K × K −◦Z

and C: K −◦Z be multivalued maps such that C(x) is a convex cone. Then
F is Cx − quasiconvex if and only if for any x ∈ K, yi ∈ K, ti > 0, i =
1 ,2, . . . , n,

∑n
i=1 ti =1, there exists 1 � j �n such that

F(x, yj )⊆F

(

x,

n∑

i=1

tiyi

)

+C(x). (1)

Proof. The sufficiency is obvious. Suppose that F is Cx quasiconvex. We
can prove (1) immediately by induction.

THEOREM 2.7. (Fan, 1961). Let E be a t.v.s., X ⊆E be an arbitrary set,
and G:X�E a KKM map. If G(x) is closed for all x ∈X and G(x0) is com-
pact for some x0 ∈X. Then

⋂{G(x):x ∈X} �=∅.

3. Simultaneous equilibrium problems

Throughout this section unless otherwise specify,we assume that Z is a real
t.v.s. and X and Y are two nonempty compact convex metrizable sets in
two locally convex t.v.s., respectively, f :X ×Y ×X −◦Z, g:X ×Y ×Y −◦Z,
C: X −◦Z, T: X −◦Y and S : X −◦X are multivalued maps with nonempty
values.

THEOREM 3.1. Suppose that

(i) S:X−◦X is a multivalued map with nonempty convex values and S−(y)

is open for all y ∈X and clS:X −◦X is u.s.c.;
(ii) T:X −◦Y is continuous with nonempty closed convex values;

(iii) C is closed and for each x ∈X, C(x) is a nonempty convex cone;
(iv) g is l.s.c. g(x, y, y)⊂C(x) for all (x, y)∈X ×Y ;
(v) (a) for any u∈X, the set {(x, y)∈X ×Y:f (x, y, u) �⊆C(x)} is open in

X ×Y ;
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(b) for all y ∈Y , the function f (·, y, ·) is SIC-DQC in the third argument.
(vi) for each fixed (x, v)∈X×Y , y −◦g(x, y, v) is Cx-quasiconcave like, and

for each (x, y)∈X ×Y , v −◦g(x, y, v) is Cx-quasiconvex.

Then there exists (x̄, ȳ)∈X ×Y , x̄ ∈ clS(x̄), ȳ ∈T (x̄) such that

f (x̄, ȳ, u)⊆C(x̄) for all u∈S(x̄)

and

g(x̄, ȳ, v)⊆C(x̄) for all v ∈T (x̄).

Proof. Let H :X −◦Y and P :X ×Y −◦X be defined by

H(x)={y ∈T (x):g(x, y, v)⊆C(x) for all v ∈T (x)}

and P(x, y)={u∈X:f (x, y, u)�C(x)} for (x, y)∈X×Y . We want to show
that H(x) is nonempty for all x ∈ X. For each x ∈ X, let Gx : T (x) �
T (x) be defined by Gx(v) = {y ∈ T (x) : g(x, y, v) ⊆ C(x)}. We show that
Gx is a KKM map. Suppose that there exists a finite set {v1, v2, . . . , vn}
in T (x) such that co{v1, v2, . . . , vn} �

⋃n
i=1 Gx(vi). Then there exists y ∈

co{v1, v2, . . . , vn} such that y /∈Gx(vi) for all i =1, 2, . . . , n.

Since T (x) is convex for all x ∈X and {v1, v2, . . . , vn}⊆T (x), y ∈T (x).

But y /∈ Gx(vi) for all i = 1, 2, . . . , n. Therefore, g(x, y, vi) � C(x) for all
i = 1, 2, . . . , n. By (vi), (iv) and Proposition 2.6 that there exists 1 � j �n

such that g(x, y, vj ) ⊆ g(x, y, y) + C(x) ⊆ C(x). This leads to a contradic-
tion. Therefore, Gx :T (x)�T (x) is a KKM map for each fixed x ∈X.

For each fixed x ∈ X and v ∈ Y , Gx(v) is closed. Indeed, let y ∈ Gx(v),

then there exists a net {yα} in Gx(v) such that yα →y. Therefore, yα ∈T (x)

and g(x, yα, v) ⊂ C(x). By (ii) and Theorem 2.1 that T is closed, and y ∈
T (x). Let z ∈ g(x, y, v). It follows from (iv) and Theorem 2.2 that there
exists a net {zα} in g(x, yα, v) such that zα →z. By (iii), C:X�Z is closed,
C(x) is a closed set for each x ∈ X. Since zα ∈ g(x, yα, v) ⊆ C(x), z ∈ C(x)

and g(x, y, v)⊆C(x). This shows that Gx(v) is closed. Since Gx(v)⊆T (x)

and T (x) is compact for each x ∈X, Gx(v) is compact for each x ∈X and
v ∈ Y . By Theorem 2.7 that ∩v∈T (x)Gx(v) �= ∅. Let y ∈ ∩v∈T (x)Gx(v). Then
y ∈Gx(v) for all v ∈T (x). Therefore for all x ∈X, H(x) �=∅.

H is closed. Indeed, if (x, y)∈GrH , then there exists a net {(xα, yα)} in
GrH such that (xα, yα) → (x, y). Therefore, yα ∈ T (xα) and g(xα, yα, v) ⊆
C(xα) for all v ∈T (xα). Let v′ ∈T (x) and w∈g(x, y, v′). Since T and g are
l.s.c. and xα →x, there exist nets {vα} and {wα} such that vα →v′, vα ∈T (xα)

for all α, wα →w and wα ∈g(xα, yα, vα)⊂C(xα) for all α. Since C is closed,
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w∈C(x) and g(x, y, v′)⊆C(x) for all v′ ∈T (x). Since T is closed, y ∈T (x)

and H is closed. Since Y is compact, it follows from Theorem 2.1 that
H : X −◦Y is u.s.c. with closed values. Let y1, y2 ∈H(x) and 0 �λ� 1, then
y1, y2 ∈T (x) and g(x, y1, v)⊆C(x) and g(x, y2, v)⊆C(x) for any v ∈T (x).
Let yλ =λy1 + (1−λ)y2. By (vi), for any v ∈T (x), either

g(x, yλ, v)⊆g(x, y1, v)+C(x)⊆C(x)+C(x)⊆C(x)

or

g(x, yλ, v)⊆g(x, y2, v)+C(x)⊆C(x)+C(x)⊆C(x).

Since T (x) is convex for each x ∈ X, yλ ∈ T (x). Therefore, yλ ∈ H(x) and
H(x) is convex. By (v)(b), it is easy to see that for each (x, y) ∈ X × Y ,
x /∈ coP(x, y). By (v)(a) P −(u) is open for all u∈X. It follows from The-
orem 2.3 that there exists (x̄, ȳ) in X × Y with x̄ ∈ clS(x̄) and ȳ ∈ H(x̄)

such that S(x̄) ∩ P(x̄, ȳ) = ∅. Therefore, ȳ ∈ T (x̄), x̄ ∈ cl S(x̄) f (x̄, ȳ, u) ⊆
C(x̄) for all u∈S(x̄), and g(x̄, ȳ, v)⊆C(x̄) for all v ∈T (x̄).

REMARK. If g =0, then Theorem 3.1 is reduced to Theorem 3.5 in Hou
et al., 2003

COROLLARY 3.1. In Theorem 3.1, if condition (v) (a) is replaced by (a′)
for each fixed u∈X, (x, y)→f (x, y, u) is l.s.c. Then the conclusion of The-
orem 3.1 holds.

Proof. Following the same argument as in Theorem 3.1, we can show
that for each u∈X, A(u)={(x, y)∈X ×Y :f (x, y, u)⊆C(x)} is closed.

THEOREM 3.2. Let X,Y,Z,S and T be the same as in Theorem 3.1.
Suppose that

(i) for each x ∈X, C(x) is a proper convex cone and int C(x) �=∅;
(ii) for each (x, v)∈X ×Y , y → g(x, y, v) is Cx-quasiconcave and g is an

u.s.c. multivalued map with compact values; for each (x, y) ∈ X × Y ,
v −◦g(x, y, v) is Cx-quasiconconvex and g(x, y, y)⊆C(x) for all x ∈X

and y ∈Y ;
(iii) W :X −◦Z defined by W(x)=Z\(−int C(x)) is u.s.c.;
(iv) (a) for any u ∈ X, the set {(x, y) ∈ X × Y : f (x, y, u) ⊆ −int C(x)} is

open in X ×Y ;
(b) for any y ∈Y , the multivalued map f (·, y, ·) is WIIC-DQC in the

third argument.
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Then there exists (x̄, ȳ)∈X ×Y , x̄ ∈ clS(x̄) and ȳ ∈T (x̄) such that

f (x̄, ȳ, u)�−int C(x̄) for all u∈S(x̄)

and

g(x̄, ȳ, v)�−int C(x̄) for all v ∈T (x̄).

Proof. Let H :X −◦Y and P :X ×Y −◦X be defined by H(x)={y ∈T (x) :
g(x, y, v) � −int C(x) for all v ∈ T (x)}, and P(x, y) = {u ∈ X : f (x, y, u) ⊆
−intC(x)} for (x, y)∈X ×Y . Let y1, y2 ∈H(x) and λ∈ [0,1]. Then y1, y2 ∈
T (x) and g(x, y1, v)�−int C(x) and g(x, y2, v)�−int C(x) for all v ∈T (x).
Let yλ = λy1 + (1 − λ)y2. Since T (x) is convex for all x ∈ X, yλ ∈ T (x). We
want to prove that g(x, yλ, v) � −int C(x) for all v ∈ T (x). This will imply
that H(x) is convex. Suppose that there exist a λ0 with 0 �λ0 � 1 and v0 ∈
T (x) such that g(x, yλ0, v0)⊆−int C(x). By (ii), either

g(x, y1, v0)⊆g(x, yλ0, v0)−C(x)⊆−int C(x)−C(x)⊆−int C(x)

or

g(x, y2, v0)⊆g(x, yλ0, v0)−C(x)⊆−int C(x)−C(x)⊆−int C(x).

This is a contradiction. Therefore, H(x) is convex for each x ∈X.
H is closed. Let (x̄, ȳ)∈GrH , then there exists a net {(xα, yα)} ∈GrH such
that (xα, yα)→ (x̄, ȳ). Therefore, yα ∈T (xα) and g(xα, yα, v)�−int C(xα) for
all v∈T (xα). Since T is u.s.c. with closed values, it follows from Theorem 2.1
that T is closed and ȳ ∈T (x̄). Let v ∈T (x̄). Since T is l.s.c., it follows from
Theorem 2.2 that there exists a net {vα} such that vα →v and vα ∈T (xα).
Since

g(xα, yα, vα)�−int C(xα),

g(xα, yα, vα)∩ (Z\(−int C(xα)) �=∅.

Let wα ∈g(xα, yα, vα)∩ (Z\(−int C(xα)).
Then wα ∈g(xα, yα, vα) and wα ∈Z\(−int C(xα).
Since g : X × Y × Y −◦Z is u.s.c. with compact values and X × Y × Y is
compact, g(X ×Y ×Y ) is compact and there exists a subnet {wαλ

} of {wα}
such that wαλ

→ w ∈ g(X × Y × Y ). By (ii) and (iii), g : X × Y × Y −◦Z

and W :X −◦Z are u.s.c. multivalued map with closed values, it follows
from Theorem 2.1 that g and W are closed. w ∈g(x̄, ȳ, v) and w ∈W(x̄)=
Z\(−int C(x̄)). Therefore, w ∈ g(x̄, ȳ, v) ∩ (Z\(−int C(x̄))) �= ∅. This shows
that g(x̄, ȳ, v) � −int C(x̄) for all v ∈ T (x̄). From this, (x̄, ȳ) ∈ GrH , H is
closed. Since H :X −◦Z is closed and Y is compact, it follows from Theo-
rem 2.1 that H is an u.s.c. multivalued map with closed convex values. We
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want to show that H(x) is nonempty for all x ∈ X. For each fixed x ∈ X,
let Gx:T (x)�T (x) be defined by Gx(v)={y ∈T (x):g(x, y, v)�−int C(x)}.
Suppose that there exists a finite set {v1, v2, . . . , vn} in T (x) such that
co{v1, v2, . . . , vn}�

⋃n
i=1 Gx(vi). Then there exists ȳ ∈co{v1, v2, . . . , vn} such

that ȳ /∈ Gx(vi) for all i = 1, 2, . . . , n. Since T (x) is a convex for all x ∈
X, ȳ ∈ T (x) and g(x, ȳ, vi) ⊆ −int C(x) for all i = 1, 2, . . . , n. By (ii) and
Proposition 2.6 that there exists 1 � j �n such that

g(x, ȳ, vj )⊆g(x, ȳ, ȳ)+C(x)⊆C(x)+C(x)⊆C(x).

By assumption, C(x) is a proper cone in Z, C(x) ∩ (−int C(x)) = ∅, and
g(x, ȳ, vj )∩ (−int C(x))=∅. This contradicts with g(x, ȳ, vi)⊆−int C(x) for
all i =1, 2, . . . , n. Therefore, Gx is a KKM map.

Write the same argument as before, we show Gx(v) is closed for each
x ∈ X and v ∈ Y , since Gx(v) ⊆ T (x) and T (x) is a compact set, Gx(v)

is a compact set for each v ∈ X. By Theorem 2.7,
⋂

v∈T (x) Gx(v) �= ∅. Let
y ∈⋂v∈T (x) Gx(v). Then y ∈T (x) and g(x, y, v)�−int C(x) for all v ∈T (x).
Therefore, y ∈H(x) �=∅ for each x ∈X. By (iv)(b), it is easy to see that for
all (x, y) ∈ X × Y , x /∈ coP(x, y). By (iv)(a) P −(u) is open for all u ∈ X.
Then it follows from Theorem 2.3 that there exists (x̄, ȳ)∈X×Y , x̄ ∈clS(x̄)

and ȳ ∈H(x̄) such that S(x̄)∩P(x̄, ȳ)=∅. Therefore, ȳ ∈T (x̄), f (x̄, ȳ, u)�

−int C(x̄) for all u∈S(x̄) and g(x̄, ȳ, v)�−int C(x̄) for all v ∈T (x̄).

REMARK. If g =0, then Theorem 3.2 is reduced to Theorem 3.1 in Hou
et al. (2003).

COROLLARY 3.2. In Theorem 3.2, if condition (iv) (a) is replaced by (a′)
for each fixed u∈X, (x, y)−◦f (x, y, u) is u.s.c. with compact values. Then
the conclusion of Theorem 3.2 holds.

Proof. Following the same arguments as in Theorem 3.2, we can show
that for each u∈X, A(u)={(x, y)∈X×Y:f (x, y, u)∩ (Z\(−int C(x)) �=∅} is
closed.

THEOREM 3.3. Let X,Y,Z,S and T be the same as in Theorem 3.1. Sup-
pose that

(i) C:X −◦Z is a closed multivalued map with nonempty convex values;
(ii) g is closed and g(x, y, y)⊆C(x) for all x ∈X and y ∈Y ;

(iii) for each (x, v)∈X×Y , y −◦g(x, y, v) is concave, and g is compact, and
for each (x, y)∈X ×Y , v −◦g(x, y, v) is Cx-quasiconconvex;

(iv) (a) for all u∈X, the set



EXISTENCE THEOREMS OF SIMULTANEOUS EQUILIBRIUM PROBLEMS 623

{(x, y)∈X ×Y :f (x, y, u)∩C(x)=∅} is open in X ×Y ; and

(b) for all y ∈Y , f (·, y, ·) is SIIC-DQC in the third argument.

Then there exists (x̄, ȳ)∈X ×Y , x̄ ∈ clS(x̄) and ȳ ∈T (x̄) such that

g(x̄, ȳ, v)∩C(x̄) �=∅ for all v ∈T (x̄)

and

f (x̄, ȳ, u)∩C(x̄) �=∅ for all u∈S(x̄).

Proof. Let H :X −◦Y and P :X ×Y −◦ be defined by

H(x)={y ∈T (x) :g(x, y, v)∩C(x) �=∅ for all v ∈T (x)},

P (x, y)={u∈X :f (x, y, u)∩C(x)=∅} for(x, y)∈X ×Y.

Following similar arguments as in Theorems 3.1 and 3.2, we can show that
H(x) is nonempty for all x ∈X.

Let y1, y2 ∈H(x), λ∈ [0,1]. Then y1, y2 ∈T (x), g(x, y1, v)∩C(x) �= ∅ and
g(x, y2, v) ∩ C(x) �= ∅ for all v ∈ T (x). Let z1 ∈ g(x, y1, v) ∩ C(x) and z2 ∈
g(x, y2, v) ∩ C(x). Then λz1 + (1 − λ)z2 ∈ C(x). For each fixed x ∈ X, and
v∈T (x), by (iii), λz1 + (1−λ)z2 ∈λg(x, y1, v)+ (1−λ)g(x, y2, v)⊆g(x, λy1 +
(1 − λ)y2, v). Therefore, λz1 + (1 − λ)z2 ∈ g(x, λy1 + (1 − λ)y2, v) ∩ C(x) �= ∅
for all v∈T (x). Since T (x) is convex, λy1 + (1−λ)y2 ∈T (x) This shows that
H(x) is convex. With the same argument as in Theorems 3.1 and 3.2, we
can show that H is closed. Since H : X −◦Y is closed and Y is compact.
H is an u.s.c. multivalued map with nonempty closed convex valued. By
(iv)(b), it is easy to see that for all (x, y)∈X×Y , x /∈ coP(x, y). By (iv)(a),
P −(u) is open for all u∈X. Then it follows from Theorem 2.3 that there
exists (x̄, ȳ)∈X ×Y , x̄ ∈S(x̄), ȳ ∈H(x̄) such that S(x̄)∩P(x̄, ȳ)=∅. There-
fore, ȳ ∈T (x̄), f (x̄, ȳ, u)∩C(x̄) �= ∅ for all u∈S(x̄), and g(x̄, ȳ, v)∩C(x̄) �=
∅ for all v ∈T (x̄).

REMARK. (1) Condition v(a) of Theorem 3.3 is satisfied if either C is
closed and f is u.s.c. with compact values or f is closed and C is u.s.c.
with compact values.

(2) If g = 0, then Theorem 3.3 is reduced to Theorem 3.4 in Hou et al.
(2003).

THEOREM 3.4. Let X a nonempty closed convex metrizable sets in locally
convex t.v.s. and Y be a nonempty complete convex metrizable sets in locally
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convex t.v.s., Z be a real t.v.s. and S :X−◦X be a multivalued map. Let C, g,
f be the same as in Theorem 3.1. Suppose further that A⊆X is a nonempty
compact convex subsets and B ⊆A is a nonempty subset such that

(i) T :X−◦Y is a continuous multivalued map with nonempty compact con-
vex values and;

(ii) S(B)⊆A;
(iii) for each x ∈ X, the set S0(x) = S(x) ∩ A is a nonempty convex set,

S−
0 (y) is open for all y ∈A and clS0 is an u.s.c. map;

(iv) For each x ∈ A\B satisfying x ∈ clS0(x) and for each y ∈ T (x) either
there exists ux ∈S0(x) such that f (x, y, ux)�C(x) or there exists vx ∈
T (x) such that g(x, y, vx)�C(x).

Then there exists (x̄, ȳ)∈X ×Y , x̄ ∈ clS(x̄) and ȳ ∈T (x̄) such that

f (x̄, ȳ, u)⊆C(x̄) for all u∈ clS(x̄)

and

g(x̄, ȳ, v)⊆C(x̄) for all v ∈T (x̄).

Proof. Let Y0 =coT (A). Since T :X−◦Y is an u.s.c. multivalued map with
nonempty compact values and A is compact, it follows from Theorems 2.1
and 2.5 that T (A) is compact and Y0 is a compact convex subset of Y . By
Theorem 3.1 that there exists (x̄, ȳ) ∈ A × Y0, x̄ ∈ S0(x̄) and ȳ ∈ T (x̄) such
that

f (x̄, ȳ, u)⊆C(x̄) for all u∈S0(x̄)

and

g(x̄, ȳ, v)⊆C(x̄) for all v ∈T (x̄).

If x̄ ∈ A\B, by (iv), there exists ux ∈ S0(x̄) such that f (x̄, ȳ, ux) � C(x̄) or
there exists vx ∈ T (x̄) such that g(x̄, ȳ, vx) � C(x̄). This leads to a contra-
diction. Therefore, x̄ ∈B, S0(x̄)=S(x̄)∩A=S(x̄) and Theorem 3.4 follows.

THEOREM 3.5. Let Z,X,Y and T be the same as Theorem 3.1 Suppose
that

(i) W :X−◦Z defined by W(x)=Z\− int C(x) is u.s.c., C(x) is a cone and
W(x) is a convex set for all x ∈X;

(ii) g is l.s.c., and g(x, y, y)⊆C(x) for all (x, y)∈X ×Y ;
(iii) for each fixed (x, v) ∈ X × Y , y −◦g(x, y, v) is convex, and for each

fixed (x, y)∈X ×Y , v −◦g(x, y, v) is Cx-quasiconconvex;
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(iv) (a) for any u∈X, the set

{(x, y)∈X ×Y :f (x, y, u)∩ (−int C(x)) �=∅} is open in X ×Y.

(b) for any y ∈ Y , the function f (·, y, ·) is WIC-DQC in the third
argument.

Then there exists (x̄, ȳ)∈X ×Y , x̄ ∈ clS(x̄) and ȳ ∈T (x̄) such that

f (x̄, ȳ, u)∩ (−int C(x̄))=∅ for all u∈S(x̄)

and

g(x̄, ȳ, v)∩ (−int C(x̄))=∅ for all v ∈T (x̄).

Proof. Let H :X −◦Y and P :X ×Y −◦X be defined by

H(x)={y ∈T (x) :g(x, y, v)∩ (−intC(x))=∅ for all v ∈T (x)} and,

P (x, y)={u∈X :f (x, y, u)∩ (−intC(x)) �=∅} for(x, y)∈X ×Y.

Then following the similar arguments as in Theorems 3.1 and 3.2, we can
show that H(x) �= ∅ for all x ∈ X and H is closed. Since H : X −◦Y is
closed and Y is compact, H is an u.s.c. multivalued map with closed val-
ues. Let y1, y2 ∈ H(x) and λ ∈ [0,1], then y1, y2 ∈ T (x) , g(x, y1, v) ⊆ W(x)

and g(x, y2, v)⊆W(x) for all v∈T (x). Since T (x) and W(x) are convex sets
for all x ∈X and g is convex,

g(x, λy1 + (1−λ)y2, v)⊆αg(x, y1, v)+ (1−α)g(x, y2, v)⊆W(x)

for all v ∈T (x)

and λy1 + (1 −λ)y2 ∈T (x). Therefore, H(x) is a convex set for each x ∈X.
By (iv)(b), it is easy to show that for all (x, y) ∈ X × Y , x /∈ coP(x, y),
By (iv)(a) P −(u) is open for all u∈X. Then it follows from Theorem 2.3
that there exists (x̄, ȳ) ∈ X × Y , x̄ ∈ clS(x̄) and ȳ ∈ H(x̄) such that S(x̄) ∩
P(x̄, ȳ)=∅. Therefore,

f (x̄, ȳ, u)∩ (−int C(x̄))=∅ for all u∈S(x̄).

From this, ȳ ∈T (x̄) and

g(x̄, ȳ, v)∩ (−int C(x̄))=∅ for all v ∈T (x̄).

REMARK. (1) Condition (iv)(a) is satisfied if for each u ∈ X,
(x, y)−◦f (x, y, u) is l.s.c. and W : X −◦Z is u.s.c., where W(x) =
Z\(−int C(x)).

(2) If g = 0, then Theorem 3.5 is reduced to Theorem 3.3 in Hou et al.
(2003).
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4. Applications in optimization theory

Applying theorem 3.1, we have the following existence theorems of simul-
taneous optimization problems and equilibrium problems. We also establish
the existence theorems of generalized vector quasi-saddle point problems.

THEOREM 4.1. Let X, Y and Z be the same as in Theorem 3.1. Suppose
that

(i) S:X−◦X is a multivalued map with nonempty convex values and S−(y)

is open for all y ∈X and clS :X −◦X is u.s.c.;
(ii) T :X−◦Y is a continuous multivalued map with nonempty closed convex

values;
(iii) C: X −◦Z is a closed multivalued map such that for each x ∈X, C(x)

is a nonempty convex cone;
(iv) g:X ×Y ×Y −◦Z is a l.s.c. multivalued map, and for each (x, y)∈X ×

Y , g(x, y, y)⊂C(x);
(v) for each fixed (x, v)∈X×Y , y −◦g(x, y, v) is Cx-quasiconcave, and for

each fixed (x, y)∈X ×Y , v −◦g(x, y, v) is Cx-quasiconvex like;

(a) f :X →Z is a continuous function;
(b) h:X×X→Z, h(x, u)=f (u)−f (x) is strong type I C-diagonally

quasi-convex in the second argument.

Then there exists (x̄, ȳ)∈X ×Y with x̄ ∈ clS(x̄) and ȳ ∈T (x̄) such that

f (u)−f (x̄)∈C(x̄) for all u∈S(x̄)

and

g(x̄, ȳ, v)⊆C(x̄) for all v ∈T (x̄).

Proof. Let F(x, y, u) = f (u) − f (x). Since f is continuous and C is
closed, it is easy to see that for any u∈X, the set {(x, y)∈X ×Y , f (u)−
f (x)∈C(x)} is closed.

Therefore, the conclusion of Theorem 4.1 follows from Theorem 3.1.

THEOREM 4.2. Let X,Y,Z,S, T and C be the same as as Theorem 4.1.
Let f : X × Y → Z be a continuous function satisfying the following condi-
tions:

(i) For each fixed x ∈X, y →f (x, y) is Cx-quasiconcave;
(ii) For each fixed y ∈ Y and any finite set A = {x1, . . . , xn} in X, and any

x ∈ co{x1, x2, . . . , xn}, f (xi, y)−f (x, y)∈C(x) for some i.
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Then there exists (x̄, ȳ)∈X ×Y with x̄ ∈ clS(x̄) and ȳ ∈T (x̄) such that

f (x, ȳ)−f (x̄, ȳ)∈C(x̄) for all x ∈S(x̄)

and

f (x̄, ȳ)−f (x̄, y)∈C(x̄) for all y ∈T (x̄).

Proof. Let F(x, y, u)=f (u, y)−f (x, y) and

g(x, y, v)=f (x, y)−f (x, v),

then for each fixed (x, y)∈X×Y , g(x, y, y)=0∈C(x). Since for each fixed
x ∈ X, y → f (x, y) is Cx-quasiconcave, for each fixed (x, v), y → g(x, y, v)

is Cx-quasiconcave, and for each fixed (x, y) ∈ X × Y , v → g(x, y, v) is
Cx-quasiconconvex. By (ii), for any y ∈Y , F(·, y, ·) is strong type I C-diag-
onally quasi-convex in the third argument. Since f :X ×Y −◦Z is continu-
ous, F and g are continuous. Since C is closed, for any u∈X, the set

{(x, y)∈X ×Y :F(x, y, u) /∈C(x)} is open in X ×Y.

Then it follows from Theorem 3.1 that there exists (x̄, ȳ)∈X×Y , x̄ ∈clS(x̄)

and ȳ ∈T (x̄) such that

F(x̄, ȳ, u)∈C(x̄) for all u∈S(x̄)

and

g(x̄, ȳ, v)∈C(x̄) for all v ∈T (x̄).

From this,

f (x, ȳ)−f (x̄, ȳ)∈C(x̄) for all x ∈S(x̄)

and

f (x̄, ȳ)−f (x̄, v)∈C(x̄) for all v ∈T (x̄).

When X and Y are not compact, we applying Theorem 4.2 and following
the same arguments as in Theorem 3.4, we have the following theorem.

THEOREM 4.3. Let X,Y,Z,S, T ,C,S0,A and B be the same as Theorem
3.4 satisfying conditions (i)–(iii) of Theorem 3.4. Let f :X×Y →Z be a con-
tinuous function satisfying the following conditions:
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(i) for each fixed x ∈X, y →f (x, y) is Cx-quasiconcave;
(ii) for each fixed y ∈Y and any finite set M ={x1, . . . , xn} in X and any

x ∈ co{x1, x2, . . . , xn}, f (xi, y)−f (x, y)∈C(x) for some i;
(iii) for each x ∈ A \ B satisfying x ∈ clS0(x) and for each y ∈ T (x), either

there exists ux ∈ S0(x) such that f (ux, y) − f (x, y) /∈ C(x) or there
exists vx ∈T (x) such that f (x, y)−f (x, vx) /∈C(x).

Then there exists (x̄, ȳ)∈X ×Y , x̄ ∈ clS(x̄) and ȳ ∈T (x̄) such that

f (x, ȳ)−f (x̄, ȳ)∈C(x̄) for all x ∈S(x̄)

and

f (x̄, ȳ)−f (x̄, y)∈C(x̄) for all y ∈T (x̄).

THEOREM 4.4. Let Z be a real Banach space, X be a compact Banach
space. Y be a nonempty compact convex metrizable subset of a locally convex
t.v.s. and L(X,Z) be equipped with σ−topology. Suppose that

(i) S:X −◦X is a multivalued map with nonempty convex values, S−(y) is
open for all y ∈Y and clS:X −◦X is an u.s.c. multivalued map;

(ii) T : X −◦Y is an u.s.c. multivalued map with nonempty compact convex
values;

(iii) C: X −◦Z is a closed multivalued map such that for each x ∈X, C(x)

is a nonempty convex cone;
(iv) (a) the function (x, y) → f ′

x(x, y) is continuous on X × Y , where
f ′

x(x, y) is the Fréchet derivative of f at (x, y) with respect to x;
(b) for any y ∈Y , and any finite subset A={x1, x2, . . . , xn} in X and

any x ∈ co{x1, x2, . . . , xn}, 〈f ′
x(x, y), xi −x〉∈C(x) for some i;

(v) f : X ×Y →Z is a continuous function and for each fixed x ∈X, y →
f (x, y) is Cx-quasiconcave.

Then there exists (x̄, ȳ)∈X ×Y , x̄ ∈ clS(x̄) and ȳ ∈T (x̄) such that

〈f ′
x(x̄, ȳ), x − x̄〉∈C(x̄) for all x ∈S(x̄)

and

f (x̄, ȳ)−f (x̄, y)∈C(x̄) for all y ∈T (x̄).

Proof. Let F : X × Y × X → Z and g : X × Y × Y → Z be defined by
F(x, y, u)=〈f ′

x(x, y), u−x〉 and g(x, y, v)=f (x, y)−f (x, v). Then by (iv),
g is continuous, by (iv), for each (x, v)∈X ×Y , y →g(x, y, v) is Cx-quasi-
concave, and for each (x, y) ∈ X × Y , v → g(x, y, v) is Cx-quasiconconvex
and g(x, y, y)=0∈C(x).
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By (iv)(a) and Theorem 2.4, for each u∈X, (x, y)→<f ′(x, y), u−x > is
continuous. Since C is closed, it is easy to see that for each u∈X, {(x, y)∈
X ×Y : 〈f ′

x(x, y), u− x〉 ∈C(x)} is closed. Then the conclusion of Theorem
4.4 follows from Theorem 3.1.

THEOREM 4.5. Under the assumption of Theorem 4.4. We further assume
that for each y ∈ Y , x → f (x, y) is C(x)-convex. Then there exists (x̄, ȳ) ∈
X ×Y , x̄ ∈ clS(x̄) and ȳ ∈T (x̄) such that

f (x, ȳ)−f (x̄, ȳ)∈C(x̄) for all x ∈S(x̄)

and

f (x̄, y)−f (x̄, v)∈C(x̄) for all y ∈T (x̄).

Proof. It follows from Theorem 4.4 that there exists (x̄, ȳ) ∈ X × Y ,
x̄ ∈ clS(x̄) and ȳ ∈T (x̄) such that

〈f ′
x(x̄, ȳ), x − x̄〉∈C(x̄) for all x ∈S(x̄)

and

f (x̄, ȳ)−f (x̄, y)∈C(x̄) for all y ∈T (x̄).

Since for each y ∈ Y , x → f (x, y) is C(x) convex, for each x ∈ X and
α ∈ (0,1)

−f (x̄ +α(x − x̄), ȳ)+αf (x, ȳ)+ (1−α)f (x̄, ȳ)∈C(x̄ +α(x − x̄)),

f (x, ȳ)−f (x̄, ȳ)− f (x̄ +α(x − x̄), ȳ)−f (x̄, ȳ)

α
∈C(x̄ +α(x − x̄)).

Since C:X −◦Z is a closed multivalued map, and

lim
α→0

f (x̄ +α(x − x̄), ȳ)−f (x̄, ȳ)

α
=<f

′
x(x̄, ȳ), x − x̄)>,

f (x, ȳ)−f (x̄, ȳ) ∈ 〈f ′
x(x̄, ȳ), x − x̄)〉+C(x̄)

⊆C(x̄)+C(x̄)⊆C(x̄).

This completes the proof of Theorem 4.5.

If X and Y are not compact, then we have the following theorem.
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THEOREM 4.6. Let Z be a real Banach space, X be a Banach space, Y be
a complete metrizable locally convex t.v.s. and L(E,Z) be equipped with σ -
topology. Suppose that S:X−◦X is a multivalued map, T :X−◦Y is an u.s.c.
multivalued map with nonempty compact convex values, C:X−◦Z is a closed
multivalued map such that for each x ∈X, C(x) is a nonempty convex cone.
Suppose further that A⊆X is a nonempty compact convex subsets and B ⊆A

is a nonempty subset and f :X×Y →Z is a continuous function satisfying the
following conditions:

(i) for each fixed x ∈ X, y → f (x, y) is Cx-quasiconcave, for each fixed
y ∈Y , x →f (x, y) is C(x)-convex and the function (x, y)→f ′

x(x, y) is
continuous on X × Y , where f ′

x(x, y) is the Fréchet derivative of f at
(x, y) with respect to x;

(ii) for any fixed y ∈Y and any finite subset M ={x1, x2, . . . , xn} in X and
any x ∈ co{x1, x2, . . . , xn}, 〈f ′

x(x, y), xi −x〉∈C(x) for some i;
(iii) S(B)⊆A;
(iv) for each x ∈ X, S0(x) = S(x) ∩ A is a nonempty convex set, S−

0 (y) is
open for all y ∈A and clS0 :X −◦X is an u.s.c. multivalued map;

(v) for each x ∈A\B, satisfying x ∈S0(x) and for each y ∈T (x) either there
exists ux ∈S0(x) such that

f (ux, y)−f (x, y) �∈C(x)

or there exists vx ∈T (x) such that

f (x, y)−f (x, vx) �∈C(x).

Then there exists (x̄, ȳ)∈X ×Y , x̄ ∈ clS(x̄) and ȳ ∈T (x̄) such that

f (x, ȳ)−f (x̄, ȳ)∈C(x̄) for all x ∈S(x̄)

and

f (x̄, ȳ)−f (x̄, y)∈C(x̄) for all y ∈T (x̄).

Proof. Let Y0 = coT (A). Then Y0 is a compact convex set in Y. By The-
orem 4.5 that there exists (x̄, ȳ)∈A×Y0, x̄ ∈clS0(x̄) and ȳ ∈T (ȳ) such that

f (x, ȳ)−f (x̄, ȳ)∈C(x̄) for all x ∈S0(x̄)

and

f (x̄, ȳ)−f (x̄, y)∈C(x̄) for all y ∈T (x̄).

Following the same arguments as in Theorem 3.4, we prove that x̄ ∈ B,
S0(x̄)=S(x̄) and Theorem 4.6 follows.
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